

TOPICAL PAST PAPER QUESTIONS WORKBOOK

AS & A Level Mathematics (9709) Paper 1
[Pure Mathematics 1]

,

May/June 2015 - February/March 2022

Chapter 1

Quadratics

1. 9709_m21_qp_12 Q: 2

$(2x-3)^2 - \frac{1}{(2x-3)^2} - 3 = 0.$	[4]
$(2x-3)^2$	
	•••••
	••••••
	/ N
	,
	•••••
	•••••
······································	
	•••••
	••••••
44	
	•••••
	•••••
	•••••

2. 9709_s21_qp_11 Q: 6
The equation of a curve is $y = (2k - 3)x^2 - kx - (k - 2)$, where k is a constant. The line $y = 3x - 4$ is a tangent to the curve.
Find the value of k . [5]

<i>~</i> ~~

Express $16x^2 - 24x + 10$ in the form $(4x + a)^2 + b$.	[2
	_
	70)
*	(0,
	······································
It is given that the equation $16x^2 - 24x + 10 = k$, where k is a co	
It is given that the equation $16x^2 - 24x + 10 = k$, where k is a co	
It is given that the equation $16x^2 - 24x + 10 = k$, where k is a co	nstant, has exactly one root.
It is given that the equation $16x^2 - 24x + 10 = k$, where k is a co	nstant, has exactly one root.
It is given that the equation $16x^2 - 24x + 10 = k$, where k is a co	nstant, has exactly one root.
It is given that the equation $16x^2 - 24x + 10 = k$, where k is a co	nstant, has exactly one root.
It is given that the equation $16x^2 - 24x + 10 = k$, where k is a co	nstant, has exactly one root.
It is given that the equation $16x^2 - 24x + 10 = k$, where k is a co	nstant, has exactly one root.
It is given that the equation $16x^2 - 24x + 10 = k$, where k is a co	nstant, has exactly one root.
It is given that the equation $16x^2 - 24x + 10 = k$, where k is a co	nstant, has exactly one root.
It is given that the equation $16x^2 - 24x + 10 = k$, where k is a co	nstant, has exactly one root.
It is given that the equation $16x^2 - 24x + 10 = k$, where k is a co	nstant, has exactly one root.
It is given that the equation $16x^2 - 24x + 10 = k$, where k is a co	nstant, has exactly one root.
It is given that the equation $16x^2 - 24x + 10 = k$, where k is a co	nstant, has exactly one root.
It is given that the equation $16x^2 - 24x + 10 = k$, where k is a co	nstant, has exactly one root.

4. 9709_s20_qp_11 Q: 5

The	equation	of a	line	is $y =$	mx +	c,	where	m	and	c are	constants,	and	the	equation	of a	a curve	e is
xy =	: 16.																

(a)	Given that the line is a tangent to the curve, express m in terms of c .	[3]
		0
		<u> </u>
	◆ .	0
		*
	NO.	
(b)	Given instead that $m = -4$, find the set of values of c for which the line in	tersects the curve at
	two distinct points.	[3]
		••••••
		
		•••••

5. 9709_s19_qp_13 Q: 1

The function f is defined by $f(x) = x^2 - 4x + 8$ for $x \in \mathbb{R}$.

(i)	Express $x^2 - 4x + 8$ in the form $(x - a)^2 + b$.	[2]
		••••
		••••
		••••
		••••
	٥٨	
		•••••
(ii)	Hence find the set of values of x for which $f(x) < 9$, giving your answer in exact form.	[3]
	<u> </u>	
		••••
		••••
	10.0	••••
		•••••
		••••

6. 9709_s18_qp_13 Q: 1
Express $3x^2 - 12x + 7$ in the form $a(x + b)^2 + c$, where a , b and c are constants. [3]
20
C
~
~~
A0'0'
**

7. 9709_w18_qp_11 Q: 1

Showing all necessary working, solve the equation $4x - 11x^{\frac{1}{2}} + 6 = 0$.	[3]
	••••
40	••••
	••••
	••••
	••••
	••••
	••••
50	
	••••
	••••
	••••
	••••
	••••
	••••

8. 9709_m17_qp_12 Q: 1
Find the set of values of k for which the equation $2x^2 + 3kx + k = 0$ has distinct real roots. [4]
29

9. 9709_s16_qp_11 Q: 6

- (a) Find the values of the constant m for which the line y = mx is a tangent to the curve $y = 2x^2 4x + 8$.
- (b) The function f is defined for $x \in \mathbb{R}$ by $f(x) = x^2 + ax + b$, where a and b are constants. The solutions of the equation f(x) = 0 are x = 1 and x = 9. Find

(i) the values of a and b, [2]

(ii) the coordinates of the vertex of the curve y = f(x). [2]

10. 9709_w16_qp_11 Q: 1

(i) Express $x^2 + 6x + 2$ in the form $(x + a)^2 + b$, where a and b are constants. [2]

(ii) Hence, or otherwise, find the set of values of x for which $x^2 + 6x + 2 > 9$. [2]

 $11.\ 9709_s15_qp_13\ Q: 1$

Express $2x^2 - 12x + 7$ in the form $a(x + b)^2 + c$, where a, b and c are constants.

[3]

12. 9709_w15_qp_13 Q: 3

- (i) Express $3x^2 6x + 2$ in the form $a(x+b)^2 + c$, where a, b and c are constants. [3]
- (ii) The function f, where $f(x) = x^3 3x^2 + 7x 8$, is defined for $x \in \mathbb{R}$. Find f'(x) and state, with a reason, whether f is an increasing function, a decreasing function or neither. [3]

